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Details are given of a three-dimensional stellarator equilibrium code NEAR. This code uses
a set of vacuum flux coordinates as a Eulerian grid for the equilibrium calculations. This coor-
dinate system provides an economic representation of the complex geometry associated with
stellarators. The equilibrium equations are solved by an energy minimization technique
employing a conjugate gradient iteration scheme. The results of extensive numerical con-
vergence studies are presented. Also comparisons with existing codes are made to benchmark
the NEAR code.

1. INTRODUCTION

The study of magnetohydrodynamic (MHD) equilibria in stellarator con-
figurations is greatly complicated by the fully three-dimensional (3-D) nature of the
device. Several approximations may be introduced that permit analytic or semi-
analytic equilibrium solutions. The method of averaging, in which the vacuum
helical magnetic field is treated as a rapidly fluctuating small scale perturbation to
the dominant toroidal field reduces the stellarator equilibrium problem to a two-
dimensional (2-D) problem [1]. An alternate analytic approach has been to make
an expansion about the magnetic axis [2].

To study stellarator equilibria without asymptotic expansions generally requires
the use of numerical methods. Most of the numerical approaches use a variational
technique to solve for the equilibria. The Chodura—Schliiter code [3] solves the
equilibrium equations by minimizing the energy on a cylindrical coordinate
Eulerian grid. The Bauer, Betancourt, and Garabedian code [4] solves the so-
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called inverse equilibrium problem, in which the equilibrium problem is refor-
mulated into that of solving for the flux coordinates, instead of solving directly for
magnetic fields and pressure.

In this paper, the NEAR code, which solves the 3-D equilibrium problem directly
by an energy minimization technique, will be described. The NEAR code for-
mulation is similar to that of the Chodura—Schliiter code except that a vacuum flux
coordinate system is employed as the Eulerian frame of reference for the
calculation. An Eulerian formulation is chosen because it allows the study of
equilibria whose flux surface topology changes with pressure. The vacuum flux
coordinates (p, 0, ) are obtained numerically from the vacuum magnetic fields
specified by a given coil configuration. The metric elements and Jacobian of the flux
coordinates are represented by Fourier series in the generalized poloidal (6) and
toroidal (¢) angles of the flux coordinates. Details of the vacuum flux coordinates
will be given in Section 2. The dependent variables in the equilibrium computation
are also represented as Fourier series in 6, ¢. In the radial direction (p), a finite dif-
ference representation is used. Using the vacuum flux coordinates in this manner, as
an Eulerian grid, will be shown to provide a far more efficient description of
geometrically complicated stellarator equilibria than the spatial coordinate finite
difference representation used in Chodura-Schliiter code. This permits a much finer
spatial numerical resolution to be achieved. The equilibrium equations and their
solution by the NEAR code algorithm will be described in Section 3. To illustrate
the numerical properties of NEAR, equilibrium results will be shown in Section 4,
for the Advanced Toroidal Facility (ATF) configuration [5], and for a 12-field-
period heliac [6]. For the ATF equilibria, comparisons will be made with other
computations. Finally, in Section 5, conclusions will be given.

2. VacuuM FLUX COORDINATES

The flux coordinate system employed is that described by Boozer [7]. For a
vacuum, the magnetic field may be described in contravariant form as

B, =B,pVpx V(0 —1¢) (1)
or in covariant form as
B,=F, V¢ (2)

where 1(p) is the rotational transform, F, is a constant, and Byp*/2 =1, is the
toroidal flux. The role of a radial variable is taken by p. The potential ¢ may be
regarded as a toroidal variable and for appropriate choice of the constant F,, ¢
changes by 2x in traversing the torus once toroidally. Finally, the role of a poloidal
angle is taken by 6, which changes by 27 in going once around the torus poloidally.

These coordinates are generated numerically in a manner described by Kuo-
Petravic et al, using the method and code described in Ref. [8]. This code
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generates the Fourier series representation of the cylindrical coordinates (R, Z, {) in
the vacuum flux coordinates 8 and ¢, by following vacuum magnetic field lines. In
most stellarators there is a toroidally repetitive structure to the coils and the
machine is composed of a series of identical field periods or modules. Also, within
each field period a symmetry exists; at equal toroidal angle distances from either
end of the field period, the R coordinates of the coils will be the same, while the Z
coordinates will be equal and opposite. This symmetry means that for an
appropriate choice of flux coordinate origin, the Fourier representation of R con-
tains only cosine terms and those of Z and ({ — ¢), only sine terms. Thus, for exam-
ple,

R(p, 8, 8)=3. R,,.(p)cos(mf +nd), (3)

m.n

where # is restricted to multiples of the number of field periods (including »=0). In
practice, of course, only a finite number of terms may be retained in these Fourier
series descriptions. Figure 1 shows how error in representing the vacuum quantities
R, Z, and |B| depends on the number of terms in the Fourier series. Here the error
is defined as

s

Max

—n<B¢<n

(IZm,n A cOS(mB + ng) — A, ¢)I>
|4(6, 8)]

that is, the maximum difference between the true value and the value from the
Fourier series with a given number of terms, normalized to the true value. The par-
ticular case illustrated in Fig. 1 is for the planar axis ATF device. The order in
which the 4,,, are included in the Fourier series is chosen to optimize its con-
vergence. At 7 harmonics the modes retained are (m=0-2, »=0) and
(m=—-3-0, n=12), and at 17 harmonics the modes are (m=0-4, n=0),
(m=—-5-2 n=12)and (m= —3 > —1, n=24). It can be seen that the Fourier
representation provides an economic and rapidly convergent description of the
vacuum fields. Typically between 10 and 20 harmonics are used to describe the
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Fic. 1. Error in representing R, Z, and |B| as Fourier series with a given number of terms.
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vacuum quantities in the equilibrium calculation. Helical axis configurations,
however, generally have a broader Fourier spectra and may require more har-
monics to adequately represent the vacuum fields.

Using the Fourier representations of R, Z, and {, the metric elements may be
computed. Using (p, 0, ¢) as the independent spatial coordinates leads to
singularities in some of the dependent variables and metric elements, at p =0. Such
singularities are numerically undesirable and may be avoided by rescaling some of

the variables by appropriate powers of p. The necessary rescalings are 4°=pA°,
2 66

Ag=A4/p, o0=2800/P°s 8o0=28,0/p. £% =p’¢¥, and $*°=pg’. Rescaling in this
manner leads to a system of coordinates and vector operators which are very
similar to ordinary cylindrical coordinates. For the remainder of this paper, these
rescalings will be assumed. Thus, for example, the inverse Jacobian is

B, |*
BOva

1 2 2 2
IR ) B
Various interrelationships show that the only independent metric elements which
must be computed are g,,,, £,4, and ge,.

Having solved the equilibrium problem in these flux coordinates, it is desirable to
be able to view the solutions in real space. This may easily be achieved using the R,
Z, and { transformations [e.g., Eq. (3)]. In particular, the magnetic surfaces are
computed by following magnetic field lines in the vacuum flux coordinates and
recording the points at which they puncture given constant toroidal angle ({)
planes. The coordinates of these punctures are then transformed to real space coor-
dinates and the magnetic surfaces are plotted. This procedure is more accurate than
transforming to real space and then following magnetic field lines; particularly
(since as explained in the next section) V-B =0 is maintained to the accuracy of
the finite difference approximations throughout the equilibrium calculation in the
vacuum flux coordinates.

G,=VpxVh -Vg= (4)

and

3. EQUILIBRIUM EQUATIONS AND NUMERICS

(a) Equilibrium Equations

The approach to solving the equilibrium problem is the same as that of the
Chodura-Schliiter code [3]. As a means of reducing the energy, a fictitious force F
is introduced

F=(VxB)xB—VP. (6)

581/60/1-6
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This force is related to a velocity using a conjugate gradient iteration scheme

<F2>n+l

Vn+1=Fn+1
TRy

v, (7)

where superscripts denote iteration level, angled brackets denote a volume average,
and « is a constant. For optimal convergence « is chosen just less than unity [3].
Using this velocity, the magnetic field B, is advanced in a flux conserving manner,

B
—=Vx(VxB). 8
- =Vx(VxB) ®)
The pressure P, which is related to the density by the adiabatic pressure law, is
advanced in a mass conserving manner,

%= ~V-VP—yPV-V, 9)

where y is the ratio of specific heats. It should be noted that instead of the con-
straint of flux conservation, an alternate constraint of zero net toroidal current is
often applied in stellarator equilibrium calculations [4, 10]. A version of the NEAR
code which uses this alternate constraint is under development and will be the sub-
ject of a future publication. From Egs. (6), (8), and (9), the rate of change of poten-
tial energy is

aw _d

7=Ej(P/(y—1)+132/2)ah=—jv-de.—. (10)

Thus, if V+F is positive definite, the potential energy will always decrease and the
final steady state will be an equilibrium [VP=Jx B]. In Ref. [3], several iteration
schemes for relating V and F are investigated. It is shown that the conjugate
gradient method [Eq. (7)] is one of the more optimal convergence schemes. Of the
other iteration schemes investigated in Ref. [3], the simplest is the friction model
V =oF; however, it is shown that this method has a very slow convergence rate.
This convergence rate is greatly improved by a technique employing Chebychev
Polynomials which permit large timesteps to be taken. An alternate improvement to
the friction model is the gradient method in which the displacement, in the direc-
tion of the force, necessary to cause a local energy minimum, is estimated and used.
The final method investigated in Ref. [3] is the conjugate gradient method which
improves on the gradient method by incorporating information from the previous
iteration step. The conjugate gradient method is simpler to implement than the
Chebychev method and is used without further investigation in the work described
in this paper.
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(b) Numerical Algorithm and Differencing

In the numerical implementation of the above equations [ Egs. (6) through (9)]
the dependent variables are V7, V?, V%, (B%/D,), (B%/D,), and P [where D, =pG,].
The main reason for time advancing (B/D,) instead of B is that in the flux coor-

dinates V-B =0, is
10/ BN 10 (B & /B
R (il DI (i) IR (i PR} 1
pap< Dv)+pae<uv>+a¢<0v> (1

Thus (B?/D,) may be computed from Eq. (11), once (BY/D,) and (B?/D,) have
been time advanced. This procedure maintains the important physical property that
V- B =0, throughout the calculation, and is also more efficient than time advancing
(B*/D,) directly.

The numerical algorithm used in the NEAR code is summarized in the flow
diagram shown in Fig. 2. The dependent variables are represented in finite dif-
ference form in the radial direction (p). The variables V* and (B?/D,) are dis-
cretized on a uniformly spaced p-mesh, whose first point is the coordinate axis
(p=0) and whose last point is at the wall. The remaining variables
[Ve Vv? (B°/D,), (B*D,), and P] are on an intermediate mesh whose points lie
halfway between those of the V*, (B*/D,) mesh. Centered finite differences are used
to approximate the p derivatives. In an earlier version of the NEAR code, all the
dependent variables were represented on the same radial mesh. This however, led to
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FiG. 2. Flow diagram of the NEAR algorithm.
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grid separation problems arising from the hyperbolic nature of the equations—the
highest derivatives that are present are first order, which only effectively couple
every other grid point and thus permit grid separation. By using the two distinct
grids as previously described, these grid separation problems are overcome.

Since the metric elements are represented as Fourier series in 6 and ¢ it is natural
to also represent the dependent variables in this manner. The symmetry arising
from the coils which was discussed in Section 2 means that (B?/D,), V?, V* can be
represented by sine series and (B%/D,), (B?/D,), V*, and P can be represented by
cosine series. Thus, for example,

V(p, 6,4, 1)=. V5,,(j. 1) cos(mf + np). (12)

This Fourier representation requires that the convolutions of Fourier series be
calculated numerically. These convolutions are performed numerically using the
simple trigonometric formulae for the products of sines and cosines. Fast Fourier
transforms are not used to compute these convolutions. The choice of the (m, n)
spectrum used in the calculations will be discussed in the next section. Simple first
order explicit differencing is used in time. The finite difference form of the equations
solved is given in the Appendix.

(c) Boundary and Initial Conditions

The magnetic field is initialized to its numerically obtained vacuum value:

BP
_=0’
D,
6
o = Botp: (13)
B?
D_ = Bo.

The velocity is initialized to zero, and the initial pressure (P;) is assumed to be of
the form

Py=a(l—p?)", (14)

where a and m are constants (for all the results presented in this paper, m=2). In
the code, analytic forms are used for the radial derivatives of the initial pressure
(Py) occurring in Egs. (6) and (9).

The boundary conditions are those of an infinitely conducting wall at the last
closed vacuum flux surface. The boundary conditions on the radial velocity and

magnetic field are
’ =0 15
%2 = B =0.
|wall ( Dv) ( )

wall
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The remaining dependent variables are on the intermediate mesh and their values
are never required at the wall. At the coordinate axis (p = 0) regularity imposes cer-
tain constraints on the behavior of the dependent variables. In particular, the (m, n)
component of ¥V?, V%, (B?/D,), (B%/D,) must go to zero at least as fast as p'™ =l
and V?, (B*/D,), P must go to zero at least as fast as p'™. The additional con-
straints that

— 0
Vrpn,n =—-m Vm,n

and (16)

B? B°
<-5:>m.n - (—D—\:>m,n

must also be satisfied by the m=1 components at p=0. For the dependent
variables (B%/D,), (B%/D,), V*, P an additional mesh point is included at p = 0. The
variables V7, V¢, (B°/D,), (B%/D,), and P are advanced in time at the origin, using
one-sided approximations to the radial derivatives, and values of the m=1 com-
ponents of ¥ and (B?/D,) are determined using Egs. (16).

4. COMPUTATIONAL RESULTS

In this section, the numerical properties of the NEAR code will be investigated
by studying equilibria for the planar axis ATF and for a 12-field-period heliac. For
each new configuration studied the convergence properties must be examined. The
results given here for the heliac and ATF are fairly representative of machines of
their class. The ATF device, in its standard mode of operation, is a 12-field period
{=2 torsatron with a rotational transform (y) varying between ~0.3 at the
magnetic axis and ~ 1.0 at the plasma edge.

There are several parameters for which numerical convergence studies must be
made. First the selection of (m, n) mode pairs to be included in the equilibrium
calculations will be considered. As a general rule, the importance of a mode in the
vacuum representation gives a good guide to the importance of that mode in the
equilibrium calculation. This is because a large harmonic in the metric elements and
Jacobian leads to good couplings to that particular harmonic during the evolution
to an equilibrium. Figure 3 shows the dominant harmonics of | B|? as function of p
for the ATF vacuum. The (1, 0) harmonic is associated with the toroidicity, while
the (—2, 12) harmonic is due to the helical coils. The (—1, 12) and (—3, 12) har-
monics are the toroidal side-bands of the (—2, 12) harmonic. Figure 4 shows the
spectrum of energies E,, , for the planar axis ATF at f,= 5%, where

wall Brznn Pm,n
E,,,,,,—J‘O p< z +y_1>dp. (17)
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Fic. 3. Dominant B2, in the vacuum representation of the planar axis ATF.
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Fi6. 5. Convergence of equilibrium shift with number of modes for f,= 5% planar axis ATF.

The solid curves in Fig. 4 are the spectrum for a simulation in which 40 modes are
retained with 34 radial grid points. The broken curves in Fig. 4 are the differences
of the E,, , between a 16- and 40-mode simulation. Good convergence with number
of modes is evident with 16 modes. The dominant modes in the finite-f spectrum
can be seen to be precisely the dominant vacuum modes (c.f. Fig. 3). A logarithmic
fall off in m and n about the dominant E,,, occurs. This relatively rapid falloff
means that the gross equilibrium properties such as equilibrium shift converge very
rapidly. Figure 5 shows how the equilibrium shift converges as the number of
modes retained in the equilibrium calculation increases, for the same case as Fig. 4.
A very rapid convergence of the equilibrium shift is evident. The first two modes
retained in Fig. 5 are the (0, 0) and (1, 0). The largest mode set represented in Fig.
5 corresponds to the 16-mode set, whose spectrum is shown in Fig. 4. For a flux
conserving calculation, the rotational transform (z) profile as a function of toroidal
flux should be a conserved quantity. Figure 6 shows how the 7 profile depends on
the number of modes retained in the calculation at §,= 5%. In Fig. 7 the flux sur-
faces are shown for the 8,=5% ATF equilibrium with 2, 7, and 16 modes retained
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<+ 0.6 s, -
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041 /V —
0.2 L
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FiG. 6. Dependence of ; profile on number of modes for f, = 5% planar axis ATF. (Vacuum ¢ profile
is shown for reference.)
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in the calculation. All of these mode convergence results show very rapid con-
vergence. At higher betas the spectrum broadens somewhat, but 20 modes are still
sufficient to give converged results at f,=15%.

For ATF the equilibrium shift is toroidally dominated, which means that the
equilibrium can be well reproduced with only two modes [the (0, 0) and (1, 0)].
For other devices, such as heliacs, the vacuum mode spectrum is much broader,
and the toroidal and helical shifts may be comparable. The net result is that heliacs
require many more harmonics (typically >25), for a well converged equilibrium.
Figure 8 shows the E,, , spectrum (8, =15%) for a 12-field-period heliac which has
an / profile varying between 4.55 at the magnetic axis and 5.33 at the plasma edge,
and a coil aspect ratio of 12. Seventy modes and 30 radial grid points were used in
the calculation associated with this spectrum. The broader character of this spec-
trum compared to the planar axis ATF spectrum (Fig. 4) is evident. Figure 9 shows
the vacuum and equilibrium flux surfaces for this case. Even though several
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T T 77
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$:0" - |- 1 =

2 MODES
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Fic. 7. Convergence of flux surfaces with number of modes for f,=5% planar axis ATF.
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FiG. 8. E,, spectrum for a 70-mode simulation of a 12-field-period heliac (8,=15%).

resonant and nearly resonant harmonics are present in the calculation, no breaking
or significant distortions to the flux surfaces are evident.

Another convergence property which must be studied is that of the radial mesh.
Figure 10 shows how the 7 profile and magnetic well profile converge with increas-
ing radial mesh at 5% central beta for ATF (16 modes). The convergence studies
shown in Fig. 10 show surprisingly good results with only seven radial mesh points;
these results are, however, consistent with similar convergence studies for the
Chodura-Schliiter code [9]. The 25-mesh-point caiculation shown in Fig. 10
required about 20 min of CPU time on a Cray-I computer. For rapid parameter
scans of devices with toroidally dominated shifts only two modes and about 10
mesh points are required. Such calculations require only a couple of minutes of
Cray-I1 CPU time. Convergence studies of the E,, , spectrum with radial mesh show
that 25 radial mesh points are sufficient to resolve the dominant harmonics (those
shown in Fig. 3) to an accuracy of 0.1% at = 5% for the planar axis ATF. Also,
25 mesh points yield an equilibrium shift converged to 0.3% accuracy. Thus, it can
be concluded that at fi,=5%, the planar axis ATF requires between 20 and 30
radial mesh points for converged equilibrium solutions. At higher beta somewhat
finer meshes are required—for example, at f,=15% the errors in the E,,, become
approximately a factor of 1.5 worse than the equivalent errors for the o, = 5% case.
Figure 11 shows how the f,=5% ATF equilibrium flux surfaces converge for
increasingly fine meshes.
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F1G. 9. Flux surfaces for the 12-field-period heliac whose spectrum is shown in Fig. 8.

The convergence of the solutions with the timestep size used in time advancing B
and P has also been studied. Typically, a timestep two or three times smaller than
that permitted by numerical stability considerations is used. The convergence of the
solution with timestep size is regularly checked by reducing the timestep and
repeating the calculation.

The most important cnvergence is the convergence toward a solution of the
equilibrium equations. The equilibrium iteration scheme makes use of a volume
average of the force [ (F?)] which provides a sensitive measure of the equilibrium
convergence. Figure 12 shows how (F?) decreases as a function of iteration during
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FiG. 10. Dependence of magnetic well (upper plot) and s profile (lower plot) on number of radial
grid points for the B, = 5% planar axis ATF.

a Bo=>5%, ATF equilibrium calculation. Also shown in Fig. 12 is the history of
equilibrium shift during the calculation. The conjugate gradient iteration scheme
gives a rapid logarithmic reduction of (F2?) and convergence of the shift. No
attempt has been made to examine alternate convergence schemes. The fact that the
(F?*) saturates at some final value is due to the numerical resistivity arising from
radial differencing errors. The final value of (F?) scales approximately as (4p) 2,
where Ap is the radial mesh size.

Another measure of the equilibrium convergence is given by the requirement that
for an exact equilibrium B-VP=0. To measure how well the NEAR equilibria
satisfy this relation the variance of the pressure on a magnetic surface is calculated
as a diagnostic. Here the variance is defined as

[({ Pdl)? — | PdI]"?
[Pdl

P= (18)
where the path of the integral is along a magnetic field line and the asymptotic
value of P is obtained by following the field line for many turns. Figure 13 shows P
as function of radius for a f,= 5%, 16-mode, 34-radial-mesh-point equilibrium.
The error (P) is almost entirely due to radial differencing errors arising during the
equilibrium calculation and also during the evaluation of P. This error scales as
(4p)™? but is relatively insensitive to the number of modes retained in the
equilibrium calculation. Although this diagnostic provides a further validation of
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the code, the gross equilibrium properties, such as shift, magnetic well, and 7 profile
provide much better measures of the necessary resolution for convergence.

The results of calculations with the NEAR code have been benchmarked against
various other codes. Some of these comparisons are given in Ref. [10]. Here the
NEAR equilibrium caiculations for ATF will be compared with results from the
Chodura—Schliiter code. Figure 14 shows a comparison of the equilibrium flux sur-
faces (B = 5%) between the two equilibrium codes. To make this comparison more
quantitative, the equilibrium shift and magnetic well profile computed with the
Chodura—Schliiter code and NEAR are compared in Figs. 15 and 16, respectively.
The good agreement between the NEAR code and the other codes provides a
valuable validation of the NEAR code. Finally in Fig. 17, the magnetic well depth
as a function of f,, computed with the NEAR code and Chodura-Schliiter code are



STELLARATOR EQUILIBRIA 91

0.6 T
r 7
04 —
o —
2
©
0.2 —
o ] ] L
[¢] 0.5 1.0 1.5 o] 0.5 1.0 1.5
ITERATION (x40%) {TERATION ()(405)

FiG. 12. Residual force (F?) and equilibrium shift (6/a) for a B, = 5% planar axis ATF calculation.

compared. At low beta (<7%) the codes agree well. At higher betas, where the
resolution of the Chodura—Schliiter code is less adequate, the agreement
deteriorates.

5. CONCLUSIONS

Details of a 3-D stellarator equilibrium code (NEAR) have been given. This code
employs the vacuum flux coordinates described by Boozer, as an Eulerian frame of
reference. These coordinates have been shown to provide an efficient representation
of the complex stellarator geometry. The NEAR code solves the equilibrium
equations in these coordinates, subject to the constraints of flux and mass conser-
vation. The code relaxes the equations to an equilibrium by an energy minimization
technique. A Fourier series representation is used in the poloidal (8) and toroidal
(@) directions, and a finite difference representation is used in the radial direction
(p). A first order explicit scheme is used to time-advance the magnetic field and
pressure.

B (x10%)

0 L
o] 04 08
PP,

wall

FIG. 13. Variance of the pressure (P) as a function of radius for planar axis ATF (parameters given
in the text).
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FiG. 14. Compatison of the equilibrium flux surfaces computed with NEAR and Chodura-Schluter
code for the planar axis ATF {8,="5%).

Equilibrium convergence studies are presented for the planar axis ATF. The
vacuum mode spectrum is shown to provide a good guide of the relative impor-
tance of a given mode in the equilibrium calculations. Convergence studies in the
number of radial mesh points show that between 20 and 30 points are sufficient.
Also the equilibrium properties of a 12-field-periodic heliac have been briefly
examined. It is found that heliacs have broader spectra and require more modes for
converged results than the planar axis ATF.

The NEAR code has been benchmarked against existing stellarator equilibrium
codes. Comparisons of flux surfaces, equilibrium shift, and magnetic well profiles

with the Chodura-Schliiter code show good agreement—thus further validating the
code.
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for the equilibrium shown in Fig. 14 (8, =5%).
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Fig. 17. Comparison of magnetic well depth as a function of f, between NEAR and the
Chodura-Schliiter code for the planar axis ATF.
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APPENDIX: FINITE DIFFERENCE FORM OF THE NEAR EQUATIONS

The following notation will be used in this appendix—a bracket around a
variable denotes the (m,n) Fourier component of that variable ([4]1=4,,,),
superscripts denote iteration level, and subscripts indicate radial mesh position.

With this notation the components of the current (J) in finite difference form are

—m
/.17, 12 =r— [Bs17 12t n(Belf, 12>

i

[B¢]:'1+ 12 [B¢]7— 1/2

(/o) =nLB,) - "

and

[J¢];,___Pi+1/2[30]7+ 1/2_pi_1/2[39]?— 12 Mm [B,]"
pidp j

where Ap is the radial mesh step and the subscript i+ 1/2 denotes a point of the
intermediate mesh halfway between p, and p,,, (many of the variables are stored
on this mesh as explained in Section 3b).

In finite difference form, the components of the equilibrium equation [Eq. [6]]
are

[F :l"'+l — [qujf]n_ [BQJ?]"-— [P]?+1/2 [P}x 1/2
pAi i i

4p
[E, Tt = [B2J¢1"+ [ZB,+,J?+1]”_ (B¢, 1/2]7+1/2]"+m[P3?+ 2
and
CF Tt o= LB, 0, 17— BTV A DB T Yy

2

In finite difference form the flux conservation equation [Eq. (8)] is

[Bo/Dv];'-:llD — [Bg/Dv];’+ 1/2
At

=n[vf.’+ 1/2(B¢/Dv)i+l/2 1+l/2(B /D )x+1/2]"

[V (BD\)ir — Ve, (B?[D\)i\ — VE(B/D,); + V{(B°/D,),]"
4p
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and
[B¢/Dv]7:11/2" [B¢/Dv]7+ 1/2
At
=" [vo, ,(B*D,) Ve, o (BYD);s 1]
—P-+1/2[ i+1/2( / vie 12— i+1/2( v]i+1/2
+Pi+1[V?+1 B?/D,);. i — qu—1(B¢/Dv)i+1]n_pi[V?(BP/Dv)i_ Vf(B¢/Dv)i]n

Pi+1/2AP
where At is the timestep. From V-B =0 an equation for (B*/D,) is given:
[B°/D, ]! =(p:+ 1[Bp/Dv];'+ 1= Apm[BO/DV];’+ 12" dpp;, 1/2”[B¢/Dv]?+ 1/2) pit.

This equation, together with the wall boundary condition [B*/D,] =0, is sufficient
to iteratively determine (B,/D,). Finally, the pressure equation [Eq. (9)] becomes,
in finite difference form,

[P 7:11/2 — [P]?+ 12 _ |: V’-’+ " (Pi+ 17 Pi):ln_ 1 |:V(.)+ " BPH 1/2:|n
At ' dp Piripl | 09

OP; i "
_[V?H/z_a;_l/z:l “V[Pi+1/2(v'v)i+1/2] s

where V-V, in finite difference form, is

V= [‘Dv)f+uzdp“(p.-+I(VP/DV)M—pi(V”/Dv)i)]
+ 1 [(D ) i(V"/D ) :|"+|:(D ), _f}_(w/D ) ]n
Pivip VIFIZ 5 vIi+1/2 vdivip o¢ vivi2 ] -

Many of the above equations implicitly involve Fourier convolutions. For example,
the last term of the last equation requires the convolution of ¥? and 1/D,.
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