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Details are given of a three-dimensional stellarator equilibrium code NEAR. This code uses 
a set of vacuum flux coordinates as a Eulerian grid for the equilibrium calculations. This coor- 
dinate system provides an economic representation of the complex geometry associated with 
stellarators. The equilibrium equations are solved by an energy minimization technique 
employing a conjugate gradient iteration scheme. The results of extensive numerical con- 
vergence studies are presented. Also comparisons with existing codes are made to benchmark 
the NEAR code. 

1. INTRODUCTION 

The study of magnetohydrodynamic (MHD) equilibria in stellarator con- 
figurations is greatly complicated by the fully three-dimensional (3-D) nature of the 
device. Several approximations may be introduced that permit analytic or semi- 
analytic equilibrium solutions. The method of averaging, in which the vacuum 
helical magnetic field is treated as a rapidly fluctuating small scale perturbation to 
the dominant toroidal field reduces the stellarator equilibrium problem to a two- 
dimensional (Z-D) problem [ 11. An alternate analytic approach has been to make 
an expansion about the magnetic axis [2]. 

To study stellarator equilibria without asymptotic expansions generally requires 
the use of numerical methods. Most of the numerical approaches use a variational 
technique to solve for the equilibria. The Chodura-Schliiter code [3] solves the 
equilibrium equations by minimizing the energy on a cylindrical coordinate 
Eulerian grid. The Bauer, Betancourt, and Garabedian code [4] solves the so- 
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called inverse equilibrium problem, in which the equilibrium problem is refor- 
mulated into that of solving for the flux coordinates, instead of solving directly for 
magnetio fields and pressure. 

In this paper, the NEAR code, which solves the 3-D equilibrium problem directly 
by an energy minimization technique, will be described. The NEAR code for- 
mulation is similar to that of the Chodura-Schliiter code except that a vacuum flux 
coordinate system is employed as the Eulerian frame of reference for the 
calculation. An Eulerian formulation is chosen because it allows the study of 
equilibria whose flux surface topology changes with pressure. The vacuum flux 
coordinates (p, 8, 4) are obtained numerically from the vacuum magnetic fields 
specified by a given coil configuration. The metric elements and Jacobian of the flux 
coordinates are represented by Fourier series in the generalized poloidal (0) and 
toroidal (4) angles of the flux coordinates. Details of the vacuum flux coordinates 
will be given in Section 2. The dependent variables in the equilibrium computation 
are also represented as Fourier series in 8, 4. In the radial direction (p), a finite dif- 
ference representation is used. Using the vacuum flux coordinates in this manner, as 
an Eulerian grid, will be shown to provide a far more efficient description of 
geometrically complicated stellarator equilibria than the spatial coordinate finite 
difference representation used in Chodura-Schliiter code. This permits a much liner 
spatial numerical resolution to be achieved. The equilibrium equations and their 
solution by the NEAR code algorithm will be described in Section 3. To illustrate 
the numerical properties of NEAR, equilibrium results will be shown in Section 4, 
for the Advanced Toroidal Facility (ATF) configuration [5], and for a 12-field- 
period heliac [6]. For the ATF equilibria, comparisons will be made with other 
computations. Finally, in Section 5, conclusions will be given. 

2. VACUUM FLUX COORDINATES 

The flux coordinate system employed is that described by Boozer [7]. For a 
vacuum, the magnetic field may be described in contravariant form as 

or in covariant form as 

B, = B,pVp x V(d - ld) (1) 

B,=F,V# (2) 

where l(p) is the rotational transform, F, is a constant, and B,p2/2 = I)~ is the 
toroidal flux. The role of a radial variable is taken by p. The potential 4 may be 
regarded as a toroidal variable and for appropriate choice of the constant F,, 0 
changes by 2n in traversing the torus once toroidally. Finally, the role of a poloidal 
angle is taken by 9, which changes by 271 in going once around the torus poloidally. 

These coordinates are generated numerically in a manner described by Kuo- 
Petravic et al., using the method and code described in Ref. [S]. This code 
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generates the Fourier series representation of the cylindrical coordinates (R, Z, 5) in 
the vacuum flux coordinates 0 and 4, by following vacuum magnetic field lines. In 
most stellarators there is a toroidally repetitive structure to the coils and the 
machine is composed of a series of identical field periods or modules. Also, within 
each field period a symmetry exists; at equal toroidal angle distances from either 
end of the field period, the R coordinates of the coils will be the same, while the Z 
coordinates will be equal and opposite. This symmetry means that for an 
appropriate choice of flux coordinate origin, the Fourier representation of R con- 
tains only cosine terms and those of Z and (5 - d), only sine terms. Thus, for exam- 
ple, 

R(P, 6 4) = 1 R,,,(P) cosW’+ 41, (3) 
m.n 

where n is restricted to multiples of the number of field periods (including n = 0). In 
practice, of course, only a finite number of terms may be retained in these Fourier 
series descriptions. Figure 1 shows how error in representing the vacuum quantities 
R, Z, and IBI depends on the number of terms in the Fourier series. Here the error 
is defined as 

that is, the maximum difference between the true value and the value from the 
Fourier series with a given number of terms, normalized to the true value. The par- 
ticular case illustrated in Fig. 1 is for the planar axis ATF device. The order in 
which the A,,, are included in the Fourier series is chosen to optimize its con- 
vergence. At 7 harmonics the modes retained are (m = 0 --f 2, n = 0) and 
(m= -3+O, n=12), and at 17 harmonics the modes are (m=O+4, n=O), 
(m= -5-+2, n= 12) and (m= -3 + -1, n = 24). It can be seen that the Fourier 
representation provides an economic and rapidly convergent description of the 
vacuum fields. Typically between 10 and 20 harmonics are used to describe the 

-3 6 9 12 I5 
NUMBER OF HARMONICS 

FIG. 1. Error in representing R, Z, and IBI as Fourier series with a given number of terms. 
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vacuum quantities in the equilibrium calculation. Helical axis configurations, 
however, generally have a broader Fourier spectra and may require more har- 
monics to adequately represent the vacuum fields. 

Using the Fourier representations of R, Z, and [, the metric elements may be 
computed. Using (p, 0, 4) as the independent spatial coordinates leads to 
singularities in some of the dependent variables and metric elements, at p = 0. Such 
singularities are numerically undesirable and may be avoided by resealing some of 
the variables by appropriate powers of p. The necessary resealings are A^* = pAe, 
b, = Ae/p, gee = gse/p2, gPe = g,*/p, gee = p2gse, and gpO = pgpO. Resealing in this 
manner leads to a system of coordinates and vector operators which are very 
similar to ordinary cylindrical coordinates. For the remainder of this paper, these 
resealings will be assumed. Thus, for example, the inverse Jacobian is 

and 

(4) 

Various interrelationships show that the only independent metric elements which 
must be computed are g,,, gPe, and g,. 

Having solved the equilibrium problem in these flux coordinates, it is desirable to 
be able to view the solutions in real space. This may easily be achieved using the R, 
Z, and [ transformations [e.g., Eq. (3)]. In particular, the magnetic surfaces are 
computed by following magnetic field lines in the vacuum flux coordinates and 
recording the points at which they puncture given constant toroidal angle (5) 
planes. The coordinates of these punctures are then transformed to real space coor- 
dinates and the magnetic surfaces are plotted. This procedure is more accurate than 
transforming to real space and then following magnetic field lines; particularly 
(since as explained in the next section) V. B = 0 is maintained to the accuracy of 
the finite difference approximations throughout the equilibrium calculation in the 
vacuum flux coordinates. 

3. EQUILIBRIUM EQUATIONS AND NUMERICS 

(a) Equilibrium Equations 

The approach to solving the equilibrium problem is the same as that of the 
Chodura-Schliiter code [3]. As a means of reducing the energy, a fictitious force F 
is introduced 

F=(VxB)xB-VP. (6) 

581/60/l-6 
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This force is related to a velocity using a conjugate gradient iteration scheme 

V ??+I- -F”+l+ct <F2YfLVn 
(F*)” ’ 

where superscripts denote iteration level, angled brackets denote a volume average, 
and tl is a constant. For optimal convergence CI is chosen just less than unity [3]. 
Using this velocity, the magnetic field B, is advanced in a flux conserving manner, 

aB 
t=Vx(VxB). 

The pressure P, which is related to the density by the adiabatic pressure law, is 
advanced in a mass conserving manner, 

ap 
at=-v'vP-yPv~v, (9) 

where y is the ratio of specific heats. It should be noted that instead of the con- 
straint of flux conservation, an alternate constraint of zero net toroidal current is 
often applied in stellarator equilibrium calculations [4, lo]. A version of the NEAR 
code which uses this alternate constraint is under development and will be the sub- 
ject of a future publication. From Eqs. (6), (8), and (9), the rate of change of poten- 
tial energy is 

;7-;j(P/(y--l)+B2/2)dr= -jV.Fdr. -=- 

Thus, if V * F is positive definite, the potential energy will always decrease and the 
final steady state will be an equilibrium [VP = J x B]. In Ref. [3], several iteration 
schemes for relating V and F are investigated. It is shown that the conjugate 
gradient method [Eq. (7)] is one of the more optimal convergence schemes. Of the 
other iteration schemes investigated in Ref. [3], the simplest is the friction model 
V = aF; however, it is shown that this method has a very slow convergence rate. 
This convergence rate is greatly improved by a technique employing Chebychev 
Polynomials which permit large timesteps to be taken. An alternate improvement to 
the friction model is the gradient method in which the displacement, in the direc- 
tion of the force, necessary to cause a local energy minimum, is estimated and used. 
The final method investigated in Ref. [S] is the conjugate gradient method which 
improves on the gradient method by incorporating information from the previous 
iteration step. The conjugate gradient method is simpler to implement than the 
Chebychev method and is used without further investigation in the work described 
in this paper. 
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(b) Numerical Algorithm and Dlfferencing 

In the numerical implementation of the above equations [Eqs. (6) through (9)] 
the dependent variables are VP, p, V@, (B’/D,), (B”/D,), and P [where D, = pG,]. 
The main reason for time advancing (B/D,) instead of B is that in the flux coor- 
dinates V - B = 0, is 

(11) 

Thus (W/D,) may be computed from Eq. (ll), once (B’/D,) and (B”/D,) have 
been time advanced. This procedure maintains the important physical property that 
V * B = 0, throughout the calculation, and is also more efficient than time advancing 
(W/D,) directly. 

The numerical algorithm used in the NEAR code is summarized in the flow 
diagram shown in Fig. 2. The dependent variables are represented in finite dif- 
ference form in the radial direction (p). The variables VP and (BP/D,) are dis- 
cretized on a uniformly spaced p-mesh, whose first point is the coordinate axis 
(p = 0) and whose last point is at the wall. The remaining variables 
C p, v’, (BB/D,), (B’P,), and P] are on an intermediate mesh whose points lie 
halfway between those of the VP, (W/D,) mesh. Centered finite differences are used 
to approximate the p derivatives. In an earlier version of the NEAR code, all the 
dependent variables were represented on the same radial mesh. This however, led to 
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FIG. 2. Flow diagram of the NEAR algorithm. 
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grid separation problems arising from the hyperbolic nature of the equations-the 
highest derivatives that are present are first order, which only effectively couple 
every other grid point and thus permit grid separation. By using the two distinct 
grids as previously described, these grid separation problems are overcome. 

Since the metric elements are represented as Fourier series in 8 and 4 it is natural 
to also represent the dependent variables in this manner. The symmetry arising 
from the coils which was discussed in Section 2 means that (W/D,), P, V” can be 
represented by sine series and (Be/D,), (B”/D,), VP, and P can be represented by 
cosine series. Thus, for example, 

WP, 4 4, t) = c V&,,(j, 1) cosw + n4). (12) 
mn 

This Fourier representation requires that the convolutions of Fourier series be 
calculated numerically. These convolutions are performed numerically using the 
simple trigonometric formulae for the products of sines and cosines. Fast Fourier 
transforms are not used to compute these convolutions. The choice of the (m, n) 
spectrum used in the calculations will be discussed in the next section. Simple first 
order explicit differencing is used in time. The finite difference form of the equations 
solved is given in the Appendix. 

(c) Boundary and Initial Conditions 

The magnetic field is initialized to its numerically obtained vacuum value: 

BP 
- 0, D,- 

$ = &,&I, 

B; B 
-= 0. 
D, 

(13) 

The velocity is initialized to zero, and the initial pressure (P,) is assumed to be of 
the form 

P,=a(l-p*)“, (14) 

where a and m are constants (for all the results presented in this paper, m = 2). In 
the code, analytic forms are used for the radial derivatives of the initial pressure 
(P,) occurring in Eqs. (6) and (9). 

The boundary conditions are those of an infinitely conducting wall at the last 
closed vacuum flux surface. The boundary conditions on the radial velocity and 
magnetic field are 

= 0. (15) 
Wdl 



STELLARATOR EQUILIBRIA 83 

The remaining dependent variables are on the intermediate mesh and their values 
are never required at the wall. At the coordinate axis (p = 0) regularity imposes cer- 
tain constraints on the behavior of the dependent variables. In particular, the (m, n) 
component of VP, Ve, (W/D,), (P/D,) must go to zero at least as fast as pllml-” 
and Vb, (B”/D,), P must go to zero at least as fast as pIm’. The additional con- 
straints that 

and (16) 

must also be satisfied by the m = 1 components at p = 0. For the dependent 
variables (Be/D,), (Bb/DV), I’&, P an additional mesh point is included at p = 0. The 
variables VP, Vd, (Be/DV), (B”/D,), and P are advanced in time at the origin, using 
one-sided approximations to the radial derivatives, and values of the m = 1 com- 
ponents of p and (P/D,) are determined using Eqs. (16). 

4. COMPUTATIONAL RESULTS 

In this section, the numerical properties of the NEAR code will be investigated 
by studying equilibria for the planar axis ATF and for a 12-field-period heliac. For 
each new configuration studied the convergence properties must be examined. The 
results given here for the heliac and ATF are fairly representative of machines of 
their class. The ATF device, in its standard mode of operation, is a 1Zlield period 
I= 2 torsatron with a rotational transform (I) varying between -0.3 at the 
magnetic axis and - 1.0 at the plasma edge. 

There are several parameters for which numerical convergence studies must be 
made. First the selection of (m, n) mode pairs to be included in the equilibrium 
calculations will be considered. As a general rule, the importance of a mode in the 
vacuum representation gives a good guide to the importance of that mode in the 
equilibrium calculation. This is because a large harmonic in the metric elements and 
Jacobian leads to good couplings to that particular harmonic during the evolution 
to an equilibrium. Figure 3 shows the dominant harmonics of 1 B[ 2 as function of p 
for the ATF vacuum. The (1,O) harmonic is associated with the toroidicity, while 
the (-2, 12) harmonic is due to the helical coils. The (- 1, 12) and (-3, 12) har- 
monics are the toroidal side-bands of the (-2, 12) harmonic. Figure 4 shows the 
spectrum of energies E,,,, for the planar axis ATF at /I0 = 5%, where 

(17) 
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FIG. 3. Dominant B& in the vacuum representation of the planar axis ATF. 
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FIG. 5. Convergence of equilibrium shift with number of modes for PO = 5% planar axis ATF. 

The solid curves in Fig. 4 are the spectrum for a simulation in which 40 modes are 
retained with 34 radial grid points. The broken curves in Fig. 4 are the differences 
of the E,,,: between a 16- and 40-mode simulation. Good convergence with number 
of modes is evident with 16 modes. The dominant modes in the finite-fi spectrum 
can be seen to be precisely the dominant vacuum modes (c.f. Fig. 3). A logarithmic 
fall off in m and n about the dominant E,,, occurs. This relatively rapid falloff 
means that the gross equilibrium properties such as equilibrium shift converge very 
rapidly. Figure 5 shows how the equilibrium shift converges as the number of 
modes retained in the equilibrium calculation increases, for the same case as Fig. 4. 
A very rapid convergence of the equilibrium shift is evident. The first two modes 
retained in Fig. 5 are the (0,O) and (l,O). The largest mode set represented in Fig. 
5 corresponds to the 16-mode set, whose spectrum is shown in Fig. 4. For a flux 
conserving calculation, the rotational transform (1) profile as a function of toroidal 
flux should be a conserved quantity. Figure 6 shows how the I profile depends on 
the number of modes retained in the calculation at &, = 5%. In Fig. 7 the flux sur- 
faces are shown for the PO = 5% ATF equilibrium with 2, 7, and 16 modes retained 

0 I6 MODES 

0.0 
--a- VACUUM 

t 0.6 

FIG. 6. Dependence of I profile on number of modes for PO = 5% planar axis ATF. (Vacuum J profile 
is shown for reference.) 
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in the calculation. All of these mode convergence results show very rapid con- 
vergence. At higher betas the spectrum broadens somewhat, but 20 modes are still 
sufficient to give converged results at PO = 15%. 

For ATF the equilibrium shift is toroidally dominated, which means that the 
equilibrium can be well reproduced with only two modes [the (0,O) and (1, O)]. 
For other devices, such as heliacs, the vacuum mode spectrum is much broader, 
and the toroidal and helical shifts may be comparable. The net result is that heliacs 
require many more harmonics (typically 225) for a well converged equilibrium. 
Figure 8 shows the I&, spectrum (/II0 = 15%) for a 12-field-period heliac which has 
an I profile varying between 4.55 at the magnetic axis and 5.33 at the plasma edge, 
and a coil aspect ratio of 12. Seventy modes and 30 radial grid points were used in 
the calculation associated with this spectrum. The broader character of this spec- 
trum compared to the planar axis ATF spectrum (Fig. 4) is evident. Figure 9 shows 
the vacuum and equilibrium flux surfaces for this case. Even though several 

16 MODES 7 MODES 2 MODES 

~-:I~.~ 

f.4 1.7 2.0 1.4 f .7 2.0 i.4 1.7 2.0 

R (cm) R (cm) R Icm) 

FIG. 7. Convergence of flux surfaces with number of modes for PO = 5% planar axis ATF 
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FIG. 8. E,,,, spectrum for a 70-mode simulation of a 12-field-period heliac (&, = 15%). 

resonant and nearly resonant harmonics are present in the calculation, no breaking 
or significant distortions to the flux surfaces are evident. 

Another convergence property which must be studied is that of the radial mesh. 
Figure 10 shows how the I profile and magnetic well profile converge with increas- 
ing radial mesh at 5% central beta for ATF (16 modes). The convergence studies 
shown in Fig. 10 show surprisingly good results with only seven radial mesh points; 
these results are, however, consistent with similar convergence studies for the 
Chodura-Schliiter code [9]. The 25-mesh-point calculation shown in Fig. 10 
required about 20 min of CPU time on a Cray-I computer. For rapid parameter 
scans of devices with toroidally dominated shifts only two modes and about 10 
mesh points are required. Such calculations require only a couple of minutes of 
Cray-I CPU time. Convergence studies of the E,,, spectrum with radial mesh show 
that 25 radial mesh points are sufficient to resolve the dominant harmonics (those 
shown in Fig. 3) to an accuracy of 0.1% at /?= 5% for the planar axis ATF. Also, 
25 mesh points yield an equilibrium shift converged to 0.3% accuracy. Thus, it can 
be concluded that at Do = 5%, the planar axis ATF requires between 20 and 30 
radial mesh points for converged equilibrium solutions. At higher beta somewhat 
finer meshes are required-for example, at /IO= 15% the errors in the Em,+ become 
approximately a factor of 1.5 worse than the equivalent errors for the a0 = 5% case. 
Figure 11 shows how the /I0 = 5% ATF equilibrium flux surfaces converge for 
increasingly line meshes. 
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FIG. 9. Flux surfaces for the 12-field-period heiiac whose spectrum is shown in Fig. 8. 

The convergence of the solutions with the timestep size used in time advancing B 
and P has also been studied. Typically, a timestep two or three times smaller than 
that permitted by numerical stability considerations is used. The convergence of the 
solution with timestep size is regularly checked by reducing the timestep and 
repeating the calculation. 

The most important cnvergence is the convergence toward a solution of the 
equilibrium equations. The equilibrium iteration scheme makes use of a volume 
average of the force [ (F* ) ] which provides a sensitive measure of the equilibrium 
convergence. Figure 12 shows how (F*) decreases as a function of iteration during 



STELLARATOR EQUILIBRIA 89 

0 
c- 
0 -2 
.- 
: -4 

5 i -6 

I ‘> -8 

- -10 

MESH POINTS 

0.2) 
0 0.5 1.0 

P/PWOll 

FIG. 10. Dependence of magnetic well (upper plot) and / profile (lower plot) on number of radial 
grid points for the /J,= 5% planar axis ATF. 

a fiO = 5%, ATF equilibrium calculation. Also shown in Fig. 12 is the history of 
equilibrium shift during the calculation. The conjugate gradient iteration scheme 
gives a rapid logarithmic reduction of (F*) and convergence of the shift. No 
attempt has been made to examine alternate convergence schemes. The fact that the 
(F’) saturates at some final value is due to the numerical resistivity arising from 
radial differencing errors. The final value of (F*) scales approximately as (LIP))~, 
where dp is the radial mesh size. 

Another measure of the equilibrium convergence is given by the requirement that 
for an exact equilibrium B * VP= 0. To measure how well the NEAR equilibria 
satisfy this relation the variance of the pressure on a magnetic surface is calculated 
as a diagnostic. Here the variance is defined as 

(18) 

where the path of the integral is along a magnetic field line and the asymptotic 
value of P is obtained by following the field line for many turns. Figure 13 shows P 
as function of radius for a /II0 = 5%, l&mode, 34-radial-mesh-point equilibrium. 
The error (P) is almost entirely due to radial differencing errors arising during the 
equilibrium calculation and also during the evaluation of P. This error scales as 
(d~)-~ but is relatively insensitive to the number of modes retained in the 
equilibrium calculation. Although this diagnostic provides a further validation of 
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FIG. 11. Convergence of flux surfaces with number of radial grid points for the fiO = 5% planar axis 
ATF. 

the code, the gross equilibrium properties, such as shift, magnetic well, and t profile 
provide much better measures of the necessary resolution for convergence. 

The results of calculations with the NEAR code have been benchmarked against 
various other codes. Some of these comparisons are given in Ref. [lo]. Here the 
NEAR equilibrium calculations for ATF will be compared with results from the 
Chodura-Schliiter code. Figure 14 shows a comparison of the equilibrium flux sur- 
faces (/?,, = 5%) between the two equilibrium codes. To make this comparison more 
quantitative, the equilibrium shift and magnetic well profile computed with the 
Chodura-Schliiter code and NEAR are compared in Figs. 15 and 16, respectively. 
The good agreement between the NEAR code and the other codes provides a 
valuable validation of the NEAR code. Finally in Fig. 17, the magnetic well depth 
as a function of &,, computed with the NEAR code and Chodura-Schliiter code are 
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FIG. 12. Residual force (Fz) and equilibrium shift (S/Z) for a DO = 5% planar axis ATF calculation. 

compared. At low beta (57%) the codes agree well. At higher betas, where the 
resolution of the Chodura-Schliiter code is less adequate, the agreement 
deteriorates. 

5. CONCLUSIONS 

Details of a 3-D stellarator equilibrium code (NEAR) have been given. This code 
employs the vacuum flux coordinates described by Boozer, as an Eulerian frame of 
reference. These coordinates have been shown to provide an effkient representation 
of the complex stellarator geometry. The NEAR code solves the equilibrium 
equations in these coordinates, subject to the constraints of flux and mass conser- 
vation. The code relaxes the equations to an equilibrium by an energy minimization 
technique. A Fourier series representation is used in the poloidal (0) and toroidal 
(4) directions, and a finite difference representation is used in the radial direction 
(p). A first order explicit scheme is used to time-advance the magnetic field and 
pressure. 

FIG. 13. Variance of the pressure (P) as a function of radius for planar axis ATF (parameters given 
in the text). 
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FIG. 14. Comparison of the equilibrium flux surfaces computed with NEAR and Chodura-Schl&er 
code for the planar axis ATF (PO = 5%). 

Equilibrium convergence studies are presented for the planar axis ATF. The 
vacuum mode spectrum is shown to provide a good guide of the relative impor- 
tance of a given mode in the equilibrium calculations. Convergence studies in the 
number of radial mesh points show that between 20 and 30 points are sufficient. 
Also the equilibrium properties of a 12-field-periodic heliac have been briefly 
examined. It is found that heliacs have broader spectra and require more modes for 
converged results than the planar axis ATF. 

The NEAR code has been benchmarked against existing stellarator equilibrium 
codes. Comparisons of flux surfaces, equilibrium shift, and magnetic well profiles 
with the Chodura-Schhiter code show good agreement-thus further validating the 
code. 
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FIG. 15. Comparison of equilibrium shift computed with NEAR and the Chodura-Schliiter code for 
the planar axis ATF. 
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FIG. 16. Comparison of the magnetic well profile computed with NEAR and Chodura-Schliiter code 
for the equilibrium shown in Fig. 14 (&, = 5%). 

FIG. 17. Comparison of magnetic well depth as a function of Do between NEAR and the 
Chodura-Schkter code for the planar axis ATF. 
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APPENDIX: FINITE DIFFERENCE FORM OF THE NEAR EQUATIONS 

The following notation will be used in this appendix-a bracket around a 
variable denotes the (m, n) Fourier component of that variable ([A] =A,,,), 
superscripts denote iteration level, and subscripts indicate radial mesh position. 

With this notation the components of the current (J) in finite difference form are 

CJ,l1+ 112 =T CB$611+ I,2 + nrK311+ I,23 
I 

and 

[J,lr = 
Pi+ I/2CBO11+ l/*-Pi- 1,2CBelY- 112 m 

PiAP 
-; C~& 

I 

where Ap is the radial mesh step and the subscript i+ l/2 denotes a point of the 
intermediate mesh halfway between pi and pi+ 1 (many of the variables are stored 
on this mesh as explained in Section 3b). 

In finite difference form, the components of the equilibrium equation [Eq. [6]] 
are 

and 

cw:1:2 = 
CBe Jp ,n- CWBl”+ 14’+,J;+,l”+nCP1~ 

I+ I/2 ,+ l/2 2 I + 112’ 

In finite difference form the flux conservation equation [Eq. (8)] is 

CBe/W7:;,2 - CB”/~vll+ ,,2 
At = nCue+ 1/2(B’IDv)i+ l/2 - uf+ lp(B’/Dv)i+ 1121~ 

C f”f’+ I(B’/Dv)i+ I- V+ ,(BP/Dv)i+ I- vf(B’/Dv)i + vjl(B’/D,)i]” - 
AP 
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and 

CB”ID,I;::,,- CB”ID.I;+ 1/2 

At 

+ pi+ IC V+ l(B’/Dv)i+ 1 - ~~+,~B”ID,)~+,I”-P~C~~(B~/D,),- WB”ID,hI” 

pi+ 1,2A~ 

, 

where At is the timestep. From V. B = 0 an equation for (BP/D,) is given: 

C~P/~~I~~~p~+~C~PI~~I~+~-~p~C~e/~~l~+~~~-~pp~+~~~~C~~/~~l~+~~~~~~~1~ 

This equation, together with the wall boundary condition [BP/D,] = 0, is sufficient 
to iteratively determine (BP/D,). Finally, the pressure equation [Eq. (9)] becomes, 
in finite difference form, 

CfTL,2 - cm+ l/2 = _ 
At 

Y;+,,2!ZL$2] 

-YCPi+1/2(V’V)i+1/*1n, 

where V. V, in finite difference form, is 

cv ’ WY+ I,2 =A C(D,)~+~,~~P-'(P~+~(YYID,)~+,-P~(~~ID,)~)]~ 
I+1 

1 
+- 

Pi+ l/2 [ 
(Dl)i+~;2$(C1/D,)iil,2]n+[(Dr)i+l,2~(~~lDr)i+,,2]n, 

Many of the above equations implicitly involve Fourier convolutions. For example, 
the last term of the last equation requires the convolution of P’ and l/D,. 
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